Journal of Petrochemical Universities
  Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Numerical Simulation of Hydrogen Storage Process in MIL⁃101(Cr) with Different Thermal Conductivity
Jie Li, Zhiqiang Zhang, Yue Fu, Shujun Chen, Yao Xu, Haixu Fan
Abstract180)   HTML6)    PDF (951KB)(125)      

In the process of hydrogen storage by MOFs materials, the low thermal conductivity of the materials leads to heat accumulation,which affects the hydrogen storage performance.In order to improve the thermal conductivity of the adsorbent material and take into account its hydrogen storage capacity, numerical simulation was used to analyze the optimal regulation range of the thermal conductivity of the adsorbent material.The results show that when the thermal conductivity of the adsorbent material is in the range of 0~1.2 W/(m·K), the maximum temperature, average temperature and hydrogen absorption capacity of the hydrogen storage tank are obviously improved with the increase of thermal conductivity.When the thermal conductivity of the material is greater than 1.2 W/(m·K), the improvement effect is significantly weakened; when the material thermal conductivity is greater than 2.0 W/(m·K), the improvement effect almost disappears. Therefore, the optimal thermal conductivity of the adsorbent should be controlled at about 1.2 W/(m·K).

2023, 36 (3): 31-36. DOI: 10.12422/j.issn.1006-396X.2023.03.005